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Abstract--Experimental data and theoretical calculations are presented for the mass-transfer rate to 
rotating disks and rotating rings when laminar, transition and fully-developed turbulent flow exist upon 
different portions of the surface. Good agreement of data and the model is obtained for rotating disks and 
relatively thick rotating rings. Results of the calculations for thin rings generally exceed the experimental data 
measured in transition and turbulent flow. A y+3 form for the eddy diffusivity is used to fit the data. No 

improvement is noticed with a form involving both y+3 and y+'. 

a, 

C~, 
d(y+), 
D, 
D(t), 

f(R), 
F, 
g, 
i, 
T, 
I, 
K, 
K1, 
n,  

Q, 
r, 

R, 
Re, 
Sr 
Sh, 

Uy, 

X, 

Y, 
y+, 

Z, 

NOMENCLATURE 

0.510 232 62; 
bulk concentration [mol cm- a I ; 
function defined in equation (13); 
diffusion coefficient [cm 2 s-  11 ; 
eddy diffusivity [cm z s-11; 
function defined in equation (23); 
Faraday's constant 96 487 [C mol-1] ;  
function defined in equation (A6); 
local current density [A cm- z] ; 
average current density [A cm-2] ;  
total current [A 1 ; 
constant defined in equation (11); 
constant defined in equation (32); 
the number of electrons transferred; 
constant used in equation (A1); 
radial coordinate [cml;  
dimensionless radius rx/(~/v); 
Reynolds number r2f~/v; 
Schmidt number v/D; 
Sherwood number ir/nFDCo~ ; 
radial velocity [cm s-11; 
axial velocity [cm s-1] ;  
dimensionless variable defined in equa- 
tion (15); 
axial coordinate [cm]; 
dimensionless axial position; 
stretched boundary layer variable de- 
fined in equation (A4). 

Greek symbols 
fl(r), 
r(4/3), 
O, 
#, 

P, 

proportionality of v, with y, [s- 11 ; 
0.892 98, the gamma function of 4/3 ; 
dimensionless concentration ; 
viscosity [ g c m -  1 s- 11 ; 
kinematic viscosity of the solution 
[cm z s-  1] ; 
Lighthill variable; 
solution density [kg cm-3] ;  

f~, 
shear stress at the surface [g cm-  1 s- 2] ; 
rotation speed [s - t ] .  

Subscripts 
i, inner radial position; 
o, outer radial position. 

INTRODUCTION 

ON ROTATING disks and rotating rings, the flow regime 
may vary from laminar near the center to fully- 
developed turbulent flow near the periphery. The 
fundamentals of fluid flow and mass transfer are well 
characterized in laminar flow. However, transition 
flow, existing between laminar and fully-developed 
turbulent flow, along with the developed turbulent 
flow regime have not been described to the same 
extent. Correlations of experimental results form the 
basis of most of the available information concerning 
the mass-transfer rates for these systems. 

Mohr and Newman [11 provide experimental re- 
suits for the Sherwood number in the laminar, tran- 
sition, and fully developed turbulent regions of a 
rotating disk. In addition, they considered the tran- 
sition region to exist for Reynolds numbers from 2 • 
l0 s to 3 • l0 s. This range is similar to values reported 
by Gregory, Stuart and Walker [21, Cobb and Saun- 
ders [-3], Kreith, Taylor and Chong [41, Tien and 
Campbell [-51, Ellison and Coronet [61, and Chin and 
Litt [71. For the transition region Mohr and Newman 
give 

Sh = (9.7 x 10-15Re 3 
+ 0.89 x 105Re-l/2)Sc 1/3 (1) 

and for fully-developed turbulent flow 

Sh = (0.0078Re ~  1.30 x 10SRe - t/2)S&/3 (2) 

909 



910 CLARENCE G. LAW, JR., PETER P1ERINI and  JOHN NEWMAN 

where the Sherwood number is defined for disks or 
rings as 

f; __ ir ~ ro 2nri(r) dr 
- -  I 

Sh nFDC o~ 7t(r2o - r~)nFDC ~" (3) 

Additional studies of mass transfer to a rotating disk 
have been reported by Ellison and Coronet as 

Sh = 0 . 0 1 1 7 R e ~  ~ for Re > 106 (4) 

and also Daguenet [8] as 

Sh = 0.00725 R e  ~ Sc ~ for Re > 105. (5) 

The different Schmidt and Reynolds number de- 
pendences are indicative of the scatter in the data. 
Modification of the multiplicative constant and the 
two exponents makes it possible to represent the data, 
due to scatter, with slightly different expressions. 
Because of the scatter in the data, it is also difficult to 
distinguish between a �89 and �88 power Schmidt number 
dependence. 

Average mass-transfer rates are measured and hence 
average-Sherwood-number correlations are obtained 
directly. The data must be differentiated to obtain 
information on local mass-transfer rates. Differen- 
tiation of data with considerable scatter may not give 
reliable information. To model accurately mass- 
transfer processes on a rotating disk (as in corrosion), 
reliable local mass-transfer rates are required. There- 
fore, the approach taken here is to develop a model 
from which local mass-transfer rates can be calculated. 
These local rates can then be integrated for com- 
parison with measured average mass-transfer rates. 
This general approach was used by Kader and Dil'man 
[9] in pipe flow. 

In the study of corrosion on a rotating disk, local 
mass-transfer rates are needed when the mass transfer 
commences at an arbitrary radial position on the 
surface. This is analogous to rotating rings with 
different thicknesses. Daguenet [8] and Deslouis and 
Keddam [101 have investigated mass-transfer rates on 
ring electrodes of various dimensions in the transition 
and turbulent regimes. Data taken by Deslouis and 
Keddam on thick rings support a 0.9 exponent on the 
Reynolds number, similar to disk correlations. How- 
ever, for thin rings the data gave rise to an exponent 
of 0.6. These authors also reported measured values of 
the limiting current for thin rings in transition and 
turbulent flow which lie below the Levich [111 re- 
lationship for thin rings. This deviation in limiting 
currents cannot be explained in terms of radial dif- 
fusion. Newman [12, 13] has considered the impor- 
tance of radial diffusion to a flat plate and to a rotating 
disk at the limiting current. Radial diffusion is impor- 
tant in a very small region and its effect is to increase 
the mass-transfer rate. 

From an analytic viewpoint, few models exist which 
describe the mass transfer to rotating disks and 
rotating rings beyond the laminar flow region. Chin 

and Litt [71 express the Sherwood number for thin 
tings in terms of the shear stress. Cognet and Daguenet 
[14] along with Kornienko and Kishinevskii [15] 
have presented models for disks and rings in turbulent 
flow. In the work by Kornienko and Kishinevskii the 
problem was solved for developed and undeveloped 
diffusion boundary layers. They also state that it is not 
possible to distinguish between the �89 and �88 Schmidt 
number dependence from rotating-ring data due to the 
different levels of development of the diffusion boun- 
dary layer. 

An approach to solving heat and mass-transfer 
problems in turbulent flow without a priori solution of 
the Navier-Stokes equations was presented by Spald- 
ing [16] some time ago. Spalding's results are for a 
Prandtl number of one. This work has been the subject 
of further investigation, review, and extension by 
Kestin and Presen [171, Kestin and Richardson [18], 
and Donovan, Hanna and Yerazunis [19]. Numerical 
results have been presented by Smith and Shah [201 
for low Prandtl numbers and extensive tabulations 
were presented by Gardner and Kestin [21] for 
Prandtl numbers up to 1000. Although the model 
developed herein is based on solving the time averaged 
convective-diffusion equation in terms of the Lighthill 
[22] variable, we would be remiss not to mention the 
applicability Of Spalding's transformation for two- 
dimensional and axisymmetric problems with high 
Schmidt numbers. However, both approaches are 
comparable in that the shear stress is required in 
addition to a form for turbulent transfer near the wall, 
but solution of the Navier-Stokes equations is not 
required. 

MODEL DEVELOPMENT 

The boundary layer form of the time-averaged 
convective-diffusion equation is the governing equa- 
tion for mass transfer 

v , ~ r + V r ~ y = ~ y L ( D + D  )~yyJ (6) 

0 - - * 1  a s  y - - * o O  

0 = 0  at y=O,  r~_r~ 

0 = 1  at y = O ,  r < r v  

v, can be expressed as 

v, =/~(r)y (7) 

and vy is given by the equation of continuity as 

v, = - ~y2 (@' (8) 
r " 

With the Lighthill variable 

/ [ 9 D  fr  
= yx/(rfl) r~/(r~)drf :s (9) ] 

i 

equation (6) can be expressed as 
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r d r ]  60 

= 3 4  ~-~+ I + D,/6r (lO) 

At this point it is appropriate to comment on the 
form for D('~ or alternatively D")/v. The concept of 
the universal velocity profile for fully-developed turbu- 
lent flow suggests that D(~ depends only on a 
dimensionless distance y + from the wall in the form y + 
= (y/v)~/(%/p), where z o is the shear stress equal to #ft. 

Expansion of the velocity components in terms ofy + 
shows that near the wall D")/v must be proportional to 
the cube of y § or a higher power of y +. With this in 
mind, many researchers [23-30] have expressed 
theoretical or experimental results in terms of 

o,', 
- - =  K y  +3 = K 

v \v~l p /  
whereas other investigators [16], [31-35] prefer 

o'" (/'Y _ _ = K y + " = K  Y_ 
v \v~l P /  

(11) 

(12) 

Levich [36] initially advocated the y+3 form but 
subsequently expressed [37] a preference for equation 
(12). The form used in equation (10) will be kept 
sufficiently general so that a decision concerning the 
form of D(')/v can be made in view of experimental and 
theoretical results. For this reason we let 

D(O 
- -  = Ky+3d(y +) (13) 

V 

where d(y +) is a function of y+. For simplicity, d(y +) 
can be considered to be one, and equation (11) is 
recovered. Substitution into equation (10) with the 
definitions 

R = x/Re = ~/(ta/v)r (14) 

9K(-~)s / ' f r"  X = " ~  r~/(rfl) dr 

;) = 9 K  g~/(g~/n)dR 05) 
i 

~ -  ~~ (16) 
n ~ 

simplifies the governing equation and boundary con- 
ditions to 

9 x r  1+ ~-~ /~_1 (17) 

0 = 1  r  

0 = 0  ~ = 0  X > 0  

0 = 1  ~ = 0  X < 0 .  

When X = 0, equation (17) simplifies to 

d20 2 dO 
de 2 + 3 r  d-~=O. (18) 

This equation is analogous to the equation given by 
Lrv~que [38], with the solution 

0 - r(4/3) e - '3 dy. (19) 

For X > 0, equation (17) is solved using a 
Crank-Nicholson procedure. The procedure is ef- 
ficient and stable. 

The local and average Sherwood numbers can be 
expressed as 

ir O~ ~ = o 
Shl~ = nF-DC~ - 

x Ra/2(f l)  1/2 (K~__c)l/3 (20) 

The term Xr r 3/2 in equation (17) accounts 
for the turbulent contribution to the mass-transfer 
rate. Equation (17) must be modified slightly to 
describe the three different transport mechanisms on 
the surface. A function f (R)  is introduced 

60 60 
9Xr ~ = 342 ~-~ + d~ 

[ (  Xr162 
• 1 +  ~ ./~j (22) 

wheref(R) is defined as 

f (R) = 0 Re<2.0 • l0 s (23a) 

R - # ( 2  x l0 s) 
f (R)  = ~/(3 x l0 s) - ~/(2 x l0 s) 

2.0x 10S_<Re<3.0x l0 s (23b) 

f (R) = 1 Re>3.0 x 10 s. (23c) 

For laminar flow, the turbulent contribution to mass 
transfer disappears, since f = 0. Equation (17) is 
recovered for fully developed turbulent flow. The 
linear dependence of f (R)  with R in the transition 
region was found to describe the data adequately. 

The Reynolds-number dependence of the shear 
stress is different for the three regimes. In laminar flow, 
the results of Von Karman [39] yield 

- -  = a R .  (24)  
fl 

Such theoretically well-established results are not 
available for the shear stress in fully developed turbu- 
lent flow. However, yon Karman's [39] semi-empirical 
expression is available from a momentum balance 
using the t-power velocity profile form commonly 
used in turbulent pipe flow. The result of von 
Karman's work is used in the form 
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fl-- = 8.55 x 10- 3 R 1.6. (25) 

Torque measurements on rotating disks are re- 
ported by Schlichting [40] in the form of torque 
coefficients. The angular shear stress is available from 
these studies. Surprisingly, its radial counterpart has 
not been explicitly reported nor correlated. Von 
Karman's expression is compatible with the torque 
measurements, the flux expression given in the Appen- 
dix, and the results of mass-transfer correlations. 

In the transition region, the shear stress is made 
continuous with the forms for laminar and fully- 
developed turbulent flow. With the experimental re- 
suits of rotating ring electrodes in mind, the Reynolds- 
number limits were set as from 1.5 x 105 to 3.0 x l0 s 
for the transition region shear stress. These limits are 
slightly different from those for f(R). A graph of the 
shear stress is given in Fig. 1. 

To fit the rotating-disk data for fully-developed 
turbulent flow [equation (2)], the shear stress and K 
must be consistent with the experimental mass- 
transfer correlation. Equation (A10), developed in the 
Appendix, for d(y § = 1, expresses the Sherwood 
number in terms of K and fl/f~ as 

( f l ) l / 2 (KSc) l /3 (26)  
Shlo ~ = 0.01092 R 1"8 Sc 1/3 = R 1.2092 

For fl/f~ given by equation (25), K = 2.9116 x 10 -3. 

It is convenient and helpful to have the mass- 
transfer flow rate for extremely thin rings. Taking fl/f~ 
as constant and the derivative as 1/F(4/3), equation 
(20) can be expanded and rearranged to yield 

Sh'~ = F ~ \ ~ ]  x (RE~-Rt)Sc '/3. (27) 

I000 

C• 300 

8 

m ~ lo~e~ 0 

.5 

3c I I I 
3.0 x I0 4 10 5 15 5 10 6 

Re 

FIG. 1. The Reynolds number dependence ofthe radial shear 
stress. 

In particular, for laminar flow, this reduces to (see 
[Ii]) 

(a/3) l/a R 2 Scl/3 
Shloc, 1am = -1"(4/3) (R 3 -- Ra~) 1/3" (28) 

Comparison of equation (27) with (28) shows the 
importance of the shear stress 

Shloc _ (  fl ,~1/3 
Sh~T~, ~am \aR-~} ' (29) 

To consider average mass-transfer rates, equation 
(27) is integrated for thin-ring conditions to give 

Sh R([J/f~)'/3 Sc'/3 
-- (30) 

6F(4/3) 

An analogous expression for laminar flow can be 
obtained so that the ratio of average Sherwood 
numbers is also given by equation (29) and is the ratio 
of the measured current to the current if laminar flow 
prevailed. 

~ ,  -- \ a - ~ }  - I~m" (31) 

The last equality is important from a practical point 
since total currents are measured from limiting current 
experiments. 

EXPERIMENTAL DATA 

Limiting currents were measured on thin rotating- 
ring electrodes. Rotation speeds were varied to in- 
vestigate the laminar, transitional and as much of the 
turbulent flow regime as possible. The electrochemical 
system used was the potassium ferricyanide-potas- 
sium ferrocyanide redox couple (approximately 
0.005 M) with an excess of potassium hydroxide (2 M) 
as a supporting electrolyte. Ferricyanide was reduced 
at the nickel ring surface. Hydrogen evolution was 
suppressed by the relatively large concentration of 
hydroxide. Thus broad, easily determined limiting- 
current plateaux were measured. 

A 2.51 cylindrical cell constructed from nickel with 
plastic end pieces served as the counterelectrode. The 
cell was jacketed. Water was circulated to control the 
electrolyte temperature at 25.00 + 0.05~ as measured 
with a platinum resistance thermometer. A Princeton 
Applied Research potentiostat Model 371 with a PAR 
Model 175 function generator was used to control the 
reaction current. Polarograms were plotted on a 
Hewlett-Packard Model 7044A x-y plotter. Electrode 
rotation speeds were measured with a calibrated 
'Strobotac'  stroboscopic tachometer. 

Three electrode assemblies were fabricated from 
nickel. All electrodes shared a common inner radius, rl, 
of 3.163 + 0.003 cm. The outer radius, to, was varied. 
The electrodes were thin, having ratios of the inner 
radius to the outer radius, rift o, of 0.9925, 0.9779 and 
0.9221. The inner insulating disk and the outer insulat- 
ing annulus were cast from Shell 826 epoxy and 
machined. The electrode and insulating surfaces were 
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polished metallographically. The finishing step was a 3000 
0.05#m diamond paste which yielded a highly- 
polished surface with no visible scratches. The elec- 

2000 
trode rotator  was fabricated to minimize vibration and 
electrode runout.  A �89 Minarek D C  speed- 
controlled motor  was used to drive the electrodes. 
Da ta  were taken over rotat ion speeds which varied 
from 10 to 66.7 Hz (600 R P M  to 4000 RPM). ~ooo 

ro 
R E S U L T S  A N D  D I S C U S S I O N  T 

The results presented in the ensuing figures are for 
d(y +) 1, that is, Dt~ +~ '~ = = K y  . Subsequent com- E 500 

ments will be made concerning a y +'-dependence of o~ 
D(')/v. 

Figure 2 shows the results for average mass-transfer 
rates on a rotating disk compared to data given by 
Mohr  and Newman El] and Daguenet  [-8]. Agreement 
between the two is obtained over a considerable range 2oo 
of Reynolds numbers. The lines m a r k e d f ( R )  = 0 or  

f ( R )  -- 1 are provided for reference. Note  that absence 
of  the eddy diffusivity term, f = 0, may result in an 
average flux below the corresponding laminar flow 
value. 

In Fig. 3 the local value of the mass-transfer rate 
from the calculations is given. At a Reynolds number  
of 1.5 x 103, the local Sherwood number drops below 
the laminar prediction due to the influence of the shear 

T u r b u l e n t  

/ 
/ 

~ o ~  
. ~ ~  ~ "  Laminar 

I r I I I 
I 0  5 1 5  2 3 5 10 6 

Re 

FIG. 3. Local mass-transfer rate on a disk electrode vs 
Reynolds number. 
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o 

I l I I 
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Re 

FIG. 2. Overall mass-transfer rate vs Reynolds number for laminar, transition and turbulent regimes. The 
Schmidt number for the data of Mohr and Newman [1] [] 1192, A 1377, + 1636, O 1760, x 2465; for the 
data of Daguenet l-8] �9 1212,& 1980. The calculated results are obtained from the solution of equation 

(22) with K = 2.9 x 10 -3 . 

HMT 24:5 - I 
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stress. However, at 2.0 x l0 s the importance of 
turbulence in the transition region is seen as the eddy 
diffusivity term causes the local rate to increase. 
Finally, the fullimpact of turbulence exists at 3.0 x 105 
and beyond. 

The data from our experiments with rotating ring 
electrodes are given in Fig. 4. The current is made 
dimensionless with the current calculated as though 
laminar flow conditions existed. This normalization is 
particularly convenient for thin rings. Data are from 
the experiments described above. Agreement of the 
data with the calculations is adequate at low Reynolds 
numbers; however, at higher values the calculated 
results exceed the measurements. The rotating rings 
considered here are quite thin. Even so, the calculated 
current very rapidly approaches the rotating-disk 
result with increases in rotation speed. Somewhat 
surprisingly, the measured flux is below the laminar 
flow relationship, in transition and fully-developed 
turbulent flow. 

This fact led to our choice of van Karman's  
expression [39] for the radial shear stress, since it also 
lies below the laminar flow value for a certain range of 
Reynolds numbers, and it was anticipated that this 
could lead to a similar behaviour for the mass-transfer 
rate in the thin-ring limit. On the other hand, ex- 
pressions for the shear stress available from torque 
measurements always lie above laminar flow results 
and differ substantially from the measurements made 
on thin ring electrodes. 

From the data presented in Fig. 4 and from the lines 
representing thin rings, it is clear that mass transfer in 
transition and turbulent flow can be less than that 

given by the laminar-flow expression. The results of the 
analysis show that the mass-transfer rate normalized 
with the laminar rate depends only upon the shear 
stress value. 

Deslouis et al. [41] have performed mass-transfer 
experiments with thin rings in the presence of small 
amounts of drag-reducing compounds. Their results 
indicate qualitatively that small changes in the con- 
centration of drag-reducing compounds cause a de- 
crease in the mass-transfer rate, as well as the angular 
shear stress (torque), in transitional and turbulent 
flow. A representation of one of their graphs is given in 
Fig. 5. 

J 

, concentration 
Tronsit ion 

Laminar 

log Re 

FIG. 5. Qualitative illustration from [41] denoting the effect 
of increasing concentration of drag reducing agent on the 

mass-transfer rate for thin rotating rings. 
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FIG. 4. The results of our mass transfer experiments on rotating rings compared to the results of the 
calculations [equation (22) with K = 2.9 x 10-a]. 
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Figure 6 is a comparison of the data taken by 
Delouis and Keddam [I0] for a relatively thick ring, 
r~/ro = 0.6. The comparison is good for all three 
regions. 

Local mass-transfer rates representative of a num- 
ber of different conditions are presented in Fig. 7. 

From the curves in figure 7, the local mass-transfer 
�9 rate on rotating rings is high at the beginning of the 
mass-transfer region and approaches the rotating disk 
results downstream of the inner radius. This is true 
whether the diffusion boundary layer begins in lami- 
nar, transition, or fully-developed turbulent flow. 

~ I 
~0 3 -  TurbuLent 

I#~ j l J "  

§ Laminor 

io 2 I I I I 
2 x {0 4 10 5 ]5 2 3 I0 6 

Re 

FIG. 6. Compar ison of the mass-transfer data  of Deslouis and  
Keddam [10] on a rotating ring for dimensions rJr  o = 0.6 
with the results of the calculations [equation (22) with K = 

2.9 • 10-3]. 

However, it is interesting to note ti~at the sharp decline 
in the local Sherwood number observed near the inner 
edge of the ring is more pronounced in fully-developed 
turbulent flow than in laminar flow. The mass- 
transfer entry length region in fully developed turbu- 
lent flow is shorter than in laminar flow. Newman [42] 
comments on this with regard to pipe flow. 

It is worth mentioning that the discrepancy between 
measured and calculated values observed in Fig. 4 
occurs in the development of the turbulent mass- 
transfer boundary layer. However, from Fig. 6 it is 
clear that the model does a good job of describing the 
average flux for thick rings, where the turbulent 
diffusion layer is more developed. 

The results presented above are for D(~ = 2.9 x 
10-3(y+ 3). In an attempt to obtain a better fit of the 
thin-ring data in transition and turbulent flow, d(y +) 
can be modified so that D(~ = Ky +3 (1 + Kly+). 
With the value of K from Lin, Moulton and Putnam 
[25], the disk results fit reasonably well with the 
expression 

D (') 
--= 3.28 x 10-4y +3 (I + 19.3y+). (32) 

In Fig. 8, D(~ is presented for these two forms in 
addition to the expression by Wasan, Tien and Wilke 
[28]. The form ofWasan, Tien and Wilke would fit the 
thin-ring data better than the two alternative forms, at 
the expense of a worse fit of the rotating-disk data in 
fully-developed turbulent flow. 

Only for very small values ofy + is the y+3, y+4 form 
smaller than the y+3 form (y+_<0.41). However, even 
with this more involved form, the thin-ring results in 
transition and turbulent flow are substantially the 
same. It is not possible to distinguish between these 
two forms from the data on rotating disks and rotating 
tings. Due to the simplicity of the governing equation 
with Ky +3, this form is preferred. 

3.8 
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3.2 

3 0  

2.8 
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2.4 

22 

20 

4.0 

Re - 1.0 x 104 / 

I I I I 
4.2 4.4 46 4.8 5.0 52 5.4 

log Re 

Re=3.0 x 105 / 
Re=2.0xl ~ / 105 ~ ~  

Re=9.0 x I0 4 ~ yTurbu len t  

Re=4-O x 104 / ~ / ~" 

I 
5.6 5.8 6.0 

FIG. 7. Local mass-transfer rate for rotating rings of various 
dimensions. The Reynolds number designation on the re- 
spective curves denotes the point at which mass transfer 

begins. 
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-4 ~ S S ' S "  

S 
s S 

- 5  L I I 
-0.5 0 o5 ~.0 ~.5 
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FIG. 8. Dependence of the eddy diffusivity upon the 
form used near thewall,  2.9 x 10-3y +3 ;3.3 x 10-4y +3 
(1 + 19.3y +) . . . .  ; form used by Wasan,  Tien and 

Wilke [-28] . . . .  
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SUMMARY AND CONCLUSIONS 

A model  is presented for the mass- t ransfer  rate to 

ro ta t ing  rings and  ro ta t ing  disks when laminar ,  
t rans i t ion  and  tu rbu len t  flow exist upon  different 
por t ions  of the surface. The  model  compares  well to  
rota t ing-disk da ta  and  to da ta  for relatively thick 
ro ta t ing  rings, existing in the li terature. Fo r  the da ta  
given herein on th in  ro ta t ing  rings, the calculated 
results may  exceed the measured  mass-transfer  ra te  in 
the t rans i t ion  and  fully-developed tu rbu len t  flow 
regimes. The  con t r ibu t ion  of the eddy diffusivity term 
to the overall  mass transfer is too h igh ,  even for these 

thin rings. A y+3 form for the eddy diffusivity is used. 
However,  no  improvemen t  in the compar i son  with 

+5 
the thin r ing da ta  was ob ta ined  for a y , y +" form. 

Acknowledgment--This work was supported by the Division 
of Chemical Sciences, Office of Basic Energy Sciences, U.S. 
Department of Energy under contract no. W-7405-Eng-48. 

REFERENCES 

1. C. M. Mohr, Jr. and J. Newman, Mass transfer to a 
rotating disk in transition flow, J. Electrochem. Soc. 123, 
1687-1691 (1976). 

2. N. Gregory, J. T. Stuart and W. S. Walker, On the 
stability of three-dimensional boundary layers with ap- 
plication to the flow due to a rotating disk, Phil. Trans. R. 
Soc. A248, 155-199 (1956). 

3. E. C. Cobb and O. A. Saunders, Heat transfer from a 
rotating disk, Proc. R. Soc. A236, 343-351 (1956). 

4. F. Kreith, J. H. Taylor and J. P. Chong, Heat and mass 
transfer from a rotating disk, Trans. Am. Soc. Mech. 
Engrs, J. Heat Transfer 81, 95 105 (1959). 

5. C. L. Tien and D. T. Campbell, Heat and mass transfer 
from rotating cones, J. Fluid Mech. 17, 105-112 (1963). 

6. B. T. Ellison and I. Coronet, Mass transfer to a rotating 
disk, J. Electrochem. Soc. 118, 68-72 (1971). 

7. D.T. Chin and M. Litt, An electrochemical study of flow 
instability on a rotating disk, J. Fluid Mech. 54, 613-625 
(1972). 

8. M. Daguenet, Etude du Transport de Matiere en So- 
lution a l'Aide des Electrodes a Disque et a Anneau 
Tournant, Int. J. Heat Mass Transfer 11, 1581-1596 
(1968). 

9. B.A. Kader and V. V. Dil'man, Heat and mass transfer in 
an inlet section under turbulent flow conditions and Pr 
>> 1, Teoreticheskie Osnovy Khimicheskoi Tekhnolffii 7, 
210-222 (1973). 

10. C. Deslouis and M. Keddam, Emploi d'Electrodes a 
anneau tournant a l'etude du transport de matiere dans 
un fluide en regime hydrodynamique laminere ou turbu- 
lent, Int. J. Heat Mass Transfer 16, 1763-1775 (1973). 

11. B. Levich, Physiochemical Hydrodynamics, Section 18. 
Prentice Hall, Englewood Cliffs (1962). 

12. J. Newman, The fundamental principles of current 
distribution and mass transport in electrochemical cells, 
p. 294, in Electroanalytical Chemistry, (edited by A. J. 
Bard), 6, 187-352. Marcel Dekker, New York (1973). 

13. W. Smyrl and J. Newman, Limiting current on a rotating 
disk with radial diffusion, J. Electrochem. Soc. 118, 
1079-1081 (1971). 

14. G. Cognet and M. Daguenet, Calcul du flux limte de 
diffusion sur un anneau tournant, Academie des Sciences. 
Comptes Rendus. Serie C: Sci. Chimique, 270, 142-145 
(1970). 

15. T. S. Kornienko and M. Kh. Kishinevskii, Diffusion flow 
towards ring electrodes on rotating disks Elektrokhimiya 

8, 1759-1766 (1972). 
16. D.B. Spalding, Heat transfer to a turbulent stream from a 

surface with a step-wise discontinuity in wall tempera- 
ture in International Developments in Heat Transfer, Part 
II, p. 439. American Society of Mechanical Engineers 
(1961). 

17. J. Kestin and L. N. Presen, Application of Schmidt's 
method to the calculation of Spaldings' function and of 
the skin-friction coefficient in turbulent flow, Int. J. Heat 
Mass Transfer 5, 143-152 (1962). 

18. J. Kestin and P. D. Richardson, Heat transfer across 
turbulent, incompressible boundary layers, Int. J. Heat 
Mass Transfer 6, 147-189 (1963). 

19. L. F. Donovan, O. T. Hanna and S. Yerazunis, Similar 
solutions of turbulent boundary layer heat and mass 
transfer problems, Chem. Engnff Sci. 22, 595-610 (1967). 

20. A. G. Smith and V. L. Shah, The calculation of wall and 
fluid temperatures for the incompressible turbulent 
boundary layer, with arbitrary distribution of wall heat 
flux, Int. J. Heat Mass Transfer 5, 1179-1189 (1962). 

21. G. O. Gardner and J. Kestin, Calculation of the Spalding 
function over a range of Prandtl numbers, Int. J. Heat 
Mass Transfer 6, 289-299 (1963). 

22. M.J. Lighthill, Contribution to the theory ofheat transfer 
through a laminar boundary layer, Proc. R. Soc. A202, 
359-377 (1950). 

23. E. V. Murphee, Relation between heat transfer and fluid 
friction, Ind. Engng Chem. 24, 726-736 (1932). 

24. C. S. Lin, E. B. Denton, H. S. Gaskill and G. L. Putnam, 
Diffusion controlled electrode reactions, Ind. Engng 
Chem. 43, 2136-2143 (1951). 

25. C. S. Lin, R. W. Moulton and G. L. Putnam, Mass 
transfer between solid wall and fluid streams - me- 
chanism and eddy distribution relationships in turbulent 
flow, Ind. Engnff Chem. 45, 636 645 (1953). 

26. H. Reichart, Die Grundlagen des Turbulenten Warmeu- 
berganges, Archly fur die Gesamte Warmetechnik 6-7, 
129-142 (1951). See also, NACA report TM 1408 (1957). 

27. W. D. Rannie, Heat transfer in turbulent shear flow, J. 
Aeronaut. Sci. 23, 485 489 (1956). 

28. D. T. Wasan, C. L. Tien and C. R. Wilke, Theoretical 
correlation of velocity and eddy viscosity for flow close to 
a pipe wall, J. Am. Inst. Chem. Engrs 9, 567-568 (1963). 

29. W. Vielstich, Der Zusammenhang Zwichen Nernst- 
eschen Diffsionsschicht und Prandtlscher Strtmungs- 
grenzschicht, Z. Elektrochem. 57, 646-655 (1953l. 

30. K. K. Sirkar and T. J. Hanratty, Limiting behavior of the 
transverse turbulent velocity fluctuations close to a wall, 
Ind. Engnff Chem. Fundamentals 8, 189-192 (1969). 

31. H.G. Elrod, Jr., Note on the turbulent shear stress near a 
wall, J. Aeronaut. Sci. 24, 468-469 (1957). 

32. R. G. Deissler, Analysis of turbulent heat transfer, mass 
transfer, and friction in smooth tubes at high Prandtl and 
Schmidt numbers, NACA report 12 10 (1955). 

33. J.S. Son and T. J. Hanratty, Limiting relation for the eddy 
diffusivity close to a wall, J. Am. Inst. Chem. Engrs 13, 
689-696 (1967). 

34. D. B. Spalding, Contribution to the theory of heat 
transfer across a turbulent boundary layer, Int. J. Heat 
Mass Transfer 7, 743 761 (1964). 

35. D.B. Spalding, A single formula for the law of the wall, J. 
Appl. Mech., Trans. Am. Soc. Mech. Engrs, series E, 
455-458 (1961). 

36. B. Levich, The theory of concentration polarization, Acta 
phys-chim. URSS 17, 257-307 (1942). 

37. B. Levich, Theory of concentration polarization. II, Acta 
phys-chim. URSS 19, 117-132 (1944). 

38. M. A. Ltv~que, Les Lois de la Transmission de Chaleur 
par Convection, Annales des Mines, Memoires 12-13, 
201-299, 305-362, 381-415 (1928). 

39. T. von Karman, t~ber Laminaire und Turbulente 
Reibung, Z. angew. Math. Mech. 1, 233-252 (1921). 

40. H. Schlichting, Boundary Layer Theory. McGraw-Hill, 



Mass transfer to rotating disks and rings in turbulent flow 917 

New York (1979). 
41. C. Deslouis, I. Epelboin, B. Tribollet, L. Viet, Local mass 

transfer in turbulent flow by electrochemical methods, 
Proc. Fourth Biennial Symposium on Turbulence of 
Liquids. 254-265, Science Press, Princeton N.J. (1975). 

42. J. Newman, Electrochemical System, p. 320. Prentice- 
Hall, Englewood Cliffs (1973). 

APPENDIX 
FULLY-DEVELOPED MASSoTRANSFER RATE 

IN FULLY DEVELOPED FLOW 

The intention is to obtain an expression for the local flux in 
fully developed turbulent flow (as R approaches infinity). The 
governing equation is given in the text as equation (6). For 
fully-developed turbulent flow at high Schmidt numbers, it is 
appropriate to use a form for the velocity near the wall which 
is compatible with torque measurements made in fully- 
developed turbulent flow and the results ofvon Karman [39]. 

Qr 1.6f~1 .Sy 
(A1) Or --  vO.8 

and from the equation of continuity 

1.3 Qr ~ fiX.Sy2 
vr = vO.~ (A2) 

Substitution of these two expressions into equation (6) gives 

Qr~ ~[(D+D(O) dO 

A stretched variable can be defined as 

y + (KSc)X/3 
2 =  

9(R) 

which changes equation (A4) to 

Oaz [- dO OOz d9 1.3za0] 

(A4) 

K ~ [ ( 1  3 a 80] 
= + g Z ) ~ z J .  (A5) 

If g becomes small as R increases, g3za << 1. Then we can 
use the Lighthill similarity solution [cf. equation (18)], which 
gives 

9 I <  - 

g = 3-3 )~qTg- -j" (A6) 

This is contradictory because here g increases with R. 
If g becomes large as R increases, g3z3 >> 1 and g can be 

cancelled on the left- and right-hand sides of the equation. 
The left side is then negligible for large R, and the equation 
reduces to 

d (z3dO~=o (A7) 
dz \ dz } 

which has no satisfactory solution near z = 0. 
Hence we are left with the conclusion that g must be 

constant as R increases, say g = 1. The left side is still 
negligible for large R, and the equation reduces to 

The solution is 

~ [ ( 1  3 dO-] 
Z )~zJ = 0. (A8) + 

l + z  3 
(A9) 

1.2092 .[o /r 0 =  l + z 3 / j  ~ l + z 3  

This then yields 

S h l ~  = dz z=o\dy§ / 

8oy:' 
= ~.2092v \ p /  ~ . \ f i j  (A10) 

Equation (A10) is a very useful relationship. Both the shear 
stress and the eddy diffusivity are involved in the expression 
for the transfer rate in fully-developed mass transfer. 

TRANSFERT MASSIQUE A DES DISQUES ET DES ANNEAUX TOURANTS AVEC UN 
ECOULEMENT LAMINAIRE, DE TRANSITION ET PLEINEMENT TURBULENT 

R~sumt--  Des exptrimentations et des calculs thtoriques sont prtsentts pour le flux massique transf&ds sur 
des disques et des anneaux tournants lorsque l'tcoulement laminaire de transition et pleinement turbulent 
recouvre difftrentes portions de la surface. On obtient un bon accord entre les mesures et le modtle pour des 
disques tournants et des anneaux relativement 6pals. Des rtsultats de calcul pour les anneaux minces 
depassent generalement les valeurs mesurtes pour la transition et l'tcoulement turbulent. On utilise une 
forme en y + 3 pour la diffusivitd turbulente. Une forme en y § 4 en plus de y § 3 n'apporte pas d'amtlioration. 

STOFFOBERGANG AN ROTIERENDE SCHEIBEN UND ROTIERENDE RINGE BEI 
LAMINARER UND VOLL ENTWICKELTER TURBULENTER STROMUNG SOWlE IM 

~BERGANGSBEREICH 

Zummmenfassung -- Es werden Versuchsergebnisse und theoretische Berechnungen fiir den Stoffiibergang 
an rotierende Scheiben und rotierende Ringe mitgeteilt, wobei in verschiedenen Bereichen der Oberfl/iche 
laminare, gemischte oder voll entwickelte turbulente Strtmung vorliegt. Fiir rotierende Scheiben und 
verh/iltnisiiBig dicke rotierende Ringe wird gute Obereinstimmung zwischen den Versuchsdaten und dem 
Modell erreicht. Rechenergebnisse ftir dfinne Ringe liegen im allgemeinen hfher  als die Versuchsergebnisse 
bei gemischter und turbulenter Strtmung. Beim Ausgleich der Versuchsdaten wird ffir den turbulenten 
Diffusionskoeffizienten ein y+ LAnsatz benutzt. Mit einem Ansatz, der sowohl y+3 als auch y+4 enth/ilt, 

konnte keine Verbesserung festgestellt werden. 
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MACCOI-IEPEHOC K BPAII[AIOI.I[HMC~ ,/IHCKAM H KOJIbUAM B 3IAMHHAPHbIX,  
HEPEXO}IHbIX H HOYIHOCTblO PA3BHTbIX TYPBYJIEHTHbIX I-IOTOKAX 

A n m n ' a n H -  I'Ipe,qCTaB.qeHbl arcnepnMeaTa.qbm,m aanHbm H TeopeT~qr pacq~Tb~ ~qa cKopocTH 
Maccoflepcuoca g npawalOmnMCa }ll'ICKaM H KO2IbUaM rlpH cyulecTBOBaHI41'I .uaMxnapshlX, Hepcxo.RHblX 
H HO.qHOCTblO pa3BHTbIX Typ6y.qeHTHbIg TeqeHR~ Ha pa3JIHqHhlX y'mCTKaX nosepXHOCTH. Xopomee 
COOTBeTCTBHe Me~lly 1]aHHblMH H MO,/]eJ'IblO noay,.leao .aria spaxaatomaxca aac~oe a OTHOCHTeJ]bHO 
TOJICThlX epama~omaxca goaeu. Pe3yJlbTaTbl BbltlHC.qeHH~ ~[.q~! TOHKHX KOJIelI Kale rlpaBH.rlO npeBb~mamT 
pe3y.rlbTaTbI 3gCrlepHMeHTaJlbnblX H3MepeHHH B nepeXOnHblX H Typ6y.qeHTnblX noroKax. 3aBHCHMOCTb 
y+3 ucno:lb3oBaaa ~ a  BHXpeBofi }IH~y3HOCTH. }]Jl1~l 3aBHCHMOCTe~ gag y+3 Tag H y+4 yayqmeHaa 

COBHa~eHH~I pacq6THbIX H 3KCHepHMeHTa21bHblX ,[laHHblX He O6HapyxeHO. 


